Contract Diff Checker

Contract Name:
SophonFarmingL2

Contract Source Code:

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

import "contracts/token/ERC20/utils/SafeERC20.sol";
import "contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "contracts/utils/cryptography/MerkleProof.sol";
import "contracts/utils/math/Math.sol";
import "contracts/farm/interfaces/IWeth.sol";
import "contracts/farm/interfaces/IstETH.sol";
import "contracts/farm/interfaces/IwstETH.sol";
import "contracts/farm/interfaces/IsDAI.sol";
import "contracts/farm/interfaces/IeETHLiquidityPool.sol";
import "contracts/farm/interfaces/IweETH.sol";
import "contracts/farm/interfaces/IPriceFeeds.sol";
import "contracts/proxies/Upgradeable2Step.sol";
import "contracts/farm/SophonFarmingState.sol";

/**
 * @title Sophon Farming Contract
 * @author Sophon
 */
contract SophonFarmingL2 is Upgradeable2Step, SophonFarmingState {
    using SafeERC20 for IERC20;

    /// @notice Emitted when a new pool is added
    event Add(address indexed lpToken, uint256 indexed pid, uint256 allocPoint);

    /// @notice Emitted when a pool is updated
    event Set(address indexed lpToken, uint256 indexed pid, uint256 allocPoint);

    /// @notice Emitted when a user deposits to a pool
    event Deposit(address indexed user, uint256 indexed pid, uint256 depositAmount, uint256 boostAmount);

    /// @notice Emitted when a user withdraws from a pool
    event Withdraw(address indexed user, uint256 indexed pid, uint256 amount);

    /// @notice Emitted when a whitelisted admin transfers points from one user to another
    event TransferPoints(address indexed sender, address indexed receiver, uint256 indexed pid, uint256 amount);

    /// @notice Emitted when a user increases the boost of an existing deposit
    event IncreaseBoost(address indexed user, uint256 indexed pid, uint256 boostAmount);

    /// @notice Emitted when the the updatePool function is called
    event PoolUpdated(uint256 indexed pid, uint256 currentValue, uint256 newPrice);

    /// @notice Emitted when setPointsPerBlock is called
    event SetPointsPerBlock(uint256 oldValue, uint256 newValue);

    /// @notice Emitted when setEmissionsMultiplier is called
    event SetEmissionsMultiplier(uint256 oldValue, uint256 newValue);

     /// @notice Emitted when held proceeds are withdrawn
    event WithdrawHeldProceeds(uint256 indexed pid, address indexed to, uint256 amount);

    error ZeroAddress();
    error PoolExists();
    error PoolDoesNotExist();
    error AlreadyInitialized();
    error NotFound(address lpToken);
    error FarmingIsStarted();
    error FarmingIsEnded();
    error TransferNotAllowed();
    error TransferTooHigh(uint256 maxAllowed);
    error InvalidEndBlock();
    error InvalidDeposit();
    error InvalidBooster();
    error InvalidPointsPerBlock();
    error InvalidTransfer();
    error WithdrawNotAllowed();
    error WithdrawTooHigh(uint256 maxAllowed);
    error WithdrawIsZero();
    error NothingInPool();
    error NoEthSent();
    error BoostTooHigh(uint256 maxAllowed);
    error BoostIsZero();
    error BridgeInvalid();
    error OnlyMerkle();

    address public immutable MERKLE;

    IPriceFeeds public immutable priceFeeds;

    /**
     * @notice Construct SophonFarming
     */
    constructor(address _MERKLE, address _priceFeeds) {
        if (_MERKLE == address(0)) revert ZeroAddress();
        MERKLE = _MERKLE;

        if (_priceFeeds == address(0)) revert ZeroAddress();
        priceFeeds = IPriceFeeds(_priceFeeds);
    }

    // Order is important
    function addPool(
        uint256 _pid,
        IERC20 _lpToken,
        address _l2Farm,
        uint256 _amount,
        uint256 _boostAmount,
        uint256 _depositAmount,
        uint256 _allocPoint,
        uint256 _lastRewardBlock,
        uint256 _accPointsPerShare,
        uint256 _totalRewards,
        string memory _description,
        uint256 _heldProceeds
    ) external onlyOwner {
        require(_amount == _boostAmount + _depositAmount, "balances don't match");

        PoolInfo memory newPool = PoolInfo({
            lpToken: _lpToken,
            l2Farm: _l2Farm,
            amount: _amount,
            boostAmount: _boostAmount,
            depositAmount: _depositAmount,
            allocPoint: 0,
            lastRewardBlock: _lastRewardBlock,
            accPointsPerShare: 0,
            totalRewards: _totalRewards,
            description: _description
        });

        if (_pid < poolInfo.length) {
            PoolInfo storage existingPool = poolInfo[_pid];
            require(existingPool.lpToken == _lpToken, "Pool LP token mismatch");
            // Update the pool
            poolInfo[_pid] = newPool;
        } else if (_pid == poolInfo.length) {
            // Add new pool
            poolInfo.push(newPool);
        } else {
            revert("wrong pid");
        }
        heldProceeds[_pid] = _heldProceeds;
        poolExists[address(_lpToken)] = true;
    }

     /**
     * @notice Withdraw heldProceeds for a given pool
     * @param _pid The pool ID to withdraw from
     * @param _to The address that will receive the tokens
     */
    function withdrawHeldProceeds(uint256 _pid, address _to) external onlyOwner {
        if (_to == address(0)) revert ZeroAddress();

        uint256 amount = heldProceeds[_pid];
        if (amount == 0) revert NothingInPool();

        // Transfer the tokens to the specified address
        poolInfo[_pid].lpToken.safeTransfer(_to, amount);

        // Reset the mapping for that pid
        heldProceeds[_pid] = 0;

        emit WithdrawHeldProceeds(_pid, _to, amount);
    }

    function updateUserInfo(address _user, uint256 _pid, UserInfo memory _userFromClaim) external {
        if (msg.sender != MERKLE) revert OnlyMerkle();
        require(_pid < poolInfo.length, "Invalid pool id");
        require(_userFromClaim.amount == _userFromClaim.boostAmount + _userFromClaim.depositAmount, "balances don't match");

        massUpdatePools();

        UserInfo storage user = userInfo[_pid][_user];
        uint256 accPointsPerShare = poolInfo[_pid].accPointsPerShare;

        user.rewardSettled =
            user.amount *
            accPointsPerShare /
            1e18 +
            user.rewardSettled -
            user.rewardDebt;

        user.rewardSettled = user.rewardSettled + _userFromClaim.rewardSettled;
        user.boostAmount = user.boostAmount + _userFromClaim.boostAmount;
        user.depositAmount = user.depositAmount + _userFromClaim.depositAmount;
        user.amount = user.amount + _userFromClaim.amount;

        user.rewardDebt = user.amount * accPointsPerShare / 1e18;
    }

    /**
     * @notice Adds a new pool to the farm. Can only be called by the owner.
     * @param _lpToken lpToken address
     * @param _emissionsMultiplier multiplier for emissions fine tuning; use 0 or 1e18 for 1x
     * @param _description description of new pool
     * @param _poolStartBlock block at which points start to accrue for the pool
     * @param _newPointsPerBlock update global points per block; 0 means no update
     * @return uint256 The pid of the newly created asset
     */
    function add(address _lpToken, uint256 _emissionsMultiplier, string memory _description, uint256 _poolStartBlock, uint256 _newPointsPerBlock) public onlyOwner returns (uint256) {
        if (_lpToken == address(0)) {
            revert ZeroAddress();
        }
        if (poolExists[_lpToken]) {
            revert PoolExists();
        }
        if (isFarmingEnded()) {
            revert FarmingIsEnded();
        }

        if (_newPointsPerBlock != 0) {
            setPointsPerBlock(_newPointsPerBlock);
        } else {
            massUpdatePools();
        }

        uint256 lastRewardBlock =
            getBlockNumber() > _poolStartBlock ? getBlockNumber() : _poolStartBlock;
        poolExists[_lpToken] = true;

        uint256 pid = poolInfo.length;

        poolInfo.push(
            PoolInfo({
                lpToken: IERC20(_lpToken),
                l2Farm: address(0),
                amount: 0,
                boostAmount: 0,
                depositAmount: 0,
                allocPoint: 0,
                lastRewardBlock: lastRewardBlock,
                accPointsPerShare: 0,
                totalRewards: 0,
                description: _description
            })
        );

        if (_emissionsMultiplier == 0) {
            // set multiplier to 1x
            _emissionsMultiplier = 1e18;
        }
        poolValue[pid].emissionsMultiplier = _emissionsMultiplier;

        emit Add(_lpToken, pid, 0);

        return pid;
    }

    /**
     * @notice Updates the given pool's allocation point. Can only be called by the owner.
     * @param _pid The pid to update
     * @param _emissionsMultiplier multiplier for emissions fine tuning; use 0 for no update OR 1e18 for 1x
     * @param _poolStartBlock block at which points start to accrue for the pool; 0 means no update
     * @param _newPointsPerBlock update global points per block; 0 means no update
     */
    function set(uint256 _pid, uint256 _emissionsMultiplier, uint256 _poolStartBlock, uint256 _newPointsPerBlock) external onlyOwner {
        if (isFarmingEnded()) {
            revert FarmingIsEnded();
        }

        if (_newPointsPerBlock != 0) {
            setPointsPerBlock(_newPointsPerBlock);
        } else {
            massUpdatePools();
        }

        PoolInfo storage pool = poolInfo[_pid];
        address lpToken = address(pool.lpToken);
        if (lpToken == address(0) || !poolExists[lpToken]) {
            revert PoolDoesNotExist();
        }

        if (_emissionsMultiplier != 0) {
            poolValue[_pid].emissionsMultiplier = _emissionsMultiplier;
        }

        // pool starting block is updated if farming hasn't started and _poolStartBlock is non-zero
        if (_poolStartBlock != 0 && getBlockNumber() < pool.lastRewardBlock) {
            pool.lastRewardBlock =
                getBlockNumber() > _poolStartBlock ? getBlockNumber() : _poolStartBlock;
        }

        emit Set(lpToken, _pid, 0);
    }

    /**
     * @notice Returns the number of pools in the farm
     * @return uint256 number of pools
     */
    function poolLength() external view returns (uint256) {
        return poolInfo.length;
    }

    /**
     * @notice Checks if farming is ended
     * @return bool True if farming is ended
     */
    function isFarmingEnded() public view returns (bool) {
        uint256 _endBlock = endBlock;
        return _endBlock != 0 && getBlockNumber() > _endBlock;
    }


    /**
     * @notice Checks if the withdrawal period is ended
     * @return bool True if withdrawal period is ended
     */
    function isWithdrawPeriodEnded() public view returns (bool) {
        uint256 _endBlockForWithdrawals = endBlockForWithdrawals;
        return _endBlockForWithdrawals != 0 && getBlockNumber() > _endBlockForWithdrawals;
    }

    /**
     * @notice Set the end block of the farm
     * @param _endBlock the end block
     * @param _withdrawalBlocks the last block that withdrawals are allowed
     */
    function setEndBlock(uint256 _endBlock, uint256 _withdrawalBlocks) external onlyOwner {
        if (isFarmingEnded()) {
            revert FarmingIsEnded();
        }
        uint256 _endBlockForWithdrawals;
        if (_endBlock != 0) {
            if (getBlockNumber() > _endBlock) {
                revert InvalidEndBlock();
            }
            _endBlockForWithdrawals = _endBlock + _withdrawalBlocks;
        } else {
            // withdrawal blocks needs an endBlock
            _endBlockForWithdrawals = 0;
        }
        massUpdatePools();
        endBlock = _endBlock;
        endBlockForWithdrawals = _endBlockForWithdrawals;
    }

    /**
     * @notice Set points per block
     * @param _pointsPerBlock points per block to set
     */
    function setPointsPerBlock(uint256 _pointsPerBlock) virtual public onlyOwner {
        if (isFarmingEnded()) {
            revert FarmingIsEnded();
        }
        if (_pointsPerBlock < 1e18 || _pointsPerBlock > 1_000e18) {
            revert InvalidPointsPerBlock();
        }
        massUpdatePools();
        emit SetPointsPerBlock(pointsPerBlock, _pointsPerBlock);
        pointsPerBlock = _pointsPerBlock;
    }

    /**
     * @notice Set booster multiplier
     * @param _boosterMultiplier booster multiplier to set
     */
    function setBoosterMultiplier(uint256 _boosterMultiplier) virtual external onlyOwner {
        if (_boosterMultiplier < 1e18 || _boosterMultiplier > 10e18) {
            revert InvalidBooster();
        }
        if (isFarmingEnded()) {
            revert FarmingIsEnded();
        }
        massUpdatePools();
        boosterMultiplier = _boosterMultiplier;
    }

    /**
     * @notice Returns the block multiplier
     * @param _from from block
     * @param _to to block
     * @return uint256 The block multiplier
     */
    function _getBlockMultiplier(uint256 _from, uint256 _to) internal view returns (uint256) {
        uint256 _endBlock = endBlock;
        if (_endBlock != 0) {
            _to = Math.min(_to, _endBlock);
        }
        if (_to > _from) {
            return (_to - _from) * 1e18;
        } else {
            return 0;
        }
    }

    /**
     * @notice Adds or removes users from the whitelist
     * @param _userAdmin an admin user who can transfer points for users
     * @param _users list of users
     * @param _isInWhitelist to add or remove
     */
    function setUsersWhitelisted(address _userAdmin, address[] memory _users, bool _isInWhitelist) external onlyOwner {
        mapping(address user => bool inWhitelist) storage whitelist_ = whitelist[_userAdmin];
        for(uint i = 0; i < _users.length; i++) {
            whitelist_[_users[i]] = _isInWhitelist;
        }
    }

    /**
     * @notice Returns pending points for user in a pool
     * @param _pid pid of the pool
     * @param _user user in the pool
     * @return uint256 pendings points
     */
    function _pendingPoints(uint256 _pid, address _user) internal view returns (uint256) {
        UserInfo storage user = userInfo[_pid][_user];
        (uint256 accPointsPerShare, ) = _settlePool(_pid);

        return user.amount *
            accPointsPerShare /
            1e18 +
            user.rewardSettled -
            user.rewardDebt;
    }

    /**
     * @notice Set emissions multiplier
     * @param _emissionsMultiplier emissions multiplier to set
     */
    function setEmissionsMultiplier(uint256 _pid, uint256 _emissionsMultiplier) external onlyOwner {
        if (_emissionsMultiplier == 0) {
            // set multiplier to 1x
            _emissionsMultiplier = 1e18;
        }

        massUpdatePools();

        PoolValue storage pv = poolValue[_pid];
        emit SetEmissionsMultiplier(pv.emissionsMultiplier, _emissionsMultiplier);
        pv.emissionsMultiplier = _emissionsMultiplier;
    }

    /**
     * @notice Returns accPointsPerShare and totalRewards to date for the pool
     * @param _pid pid of the pool
     * @return accPointsPerShare
     * @return totalRewards
     */
    function _settlePool(uint256 _pid) internal view returns (uint256 accPointsPerShare, uint256 totalRewards) {
        PoolInfo storage pool = poolInfo[_pid];

        accPointsPerShare = pool.accPointsPerShare;
        totalRewards = pool.totalRewards;

        uint256 lpSupply = pool.amount;
        uint256 _totalValue = totalValue;
        if (getBlockNumber() > pool.lastRewardBlock && lpSupply != 0 && _totalValue != 0) {
            uint256 blockMultiplier = _getBlockMultiplier(pool.lastRewardBlock, getBlockNumber());

            uint256 pointReward =
                blockMultiplier *
                pointsPerBlock *
                poolValue[_pid].lastValue /
                _totalValue;

            totalRewards = totalRewards + pointReward / 1e18;

            accPointsPerShare = pointReward /
                lpSupply +
                accPointsPerShare;
        }
    }

    /**
     * @notice Returns pending points for user in a pool
     * @param _pid pid of the pool
     * @param _user user in the pool
     * @return uint256 pendings points
     */
    function pendingPoints(uint256 _pid, address _user) external view returns (uint256) {
        return _pendingPoints(_pid, _user);
    }

    /**
     * @notice Update accounting of all pools
     */
    function massUpdatePools() public {
        uint256 length = poolInfo.length;
        uint256 totalNewValue;
        uint256 _pid;

        // [[lastRewardBlock, lastValue, lpSupply, newPrice]]
        uint256[4][] memory valuesArray = new uint256[4][](length);
        for(_pid = 0; _pid < length; ++_pid) {
            valuesArray[_pid] = _updatePool(_pid);
            totalNewValue += valuesArray[_pid][1];
        }

        totalValue = totalNewValue;

        uint256 _pointsPerBlock = pointsPerBlock;
        for(_pid = 0; _pid < length; ++_pid) {
            uint256[4] memory values = valuesArray[_pid];
            PoolInfo storage pool = poolInfo[_pid];

            if (getBlockNumber() <= values[0]) {
                continue;
            }

            if (values[2] != 0 && values[1] != 0) {
                uint256 blockMultiplier = _getBlockMultiplier(values[0], getBlockNumber());
                uint256 pointReward =
                    blockMultiplier *
                    _pointsPerBlock *
                    values[1] /
                    totalNewValue;

                pool.totalRewards = pool.totalRewards + pointReward / 1e18;

                pool.accPointsPerShare = pointReward /
                    values[2] +
                    pool.accPointsPerShare;
            }

            pool.lastRewardBlock = getBlockNumber();

            emit PoolUpdated(_pid, values[1], values[3]);
        }
    }

    // returns [lastRewardBlock, lastValue, lpSupply, newPrice]
    function _updatePool(uint256 _pid) internal returns (uint256[4] memory values) {

        PoolInfo storage pool = poolInfo[_pid];
        values[0] = pool.lastRewardBlock;

        if (getBlockNumber() < values[0]) {
            // pool doesn't start until a future block
            return values;
        }

        PoolValue storage pv = poolValue[_pid];
        values[1] = pv.lastValue;

        if (getBlockNumber() == values[0]) {
            // pool was already processed this block, but we still need the value
            return values;
        }

        values[2] = pool.amount;

        if (values[2] == 0) {
            return values;
        }

        values[3] = priceFeeds.getPrice(address(pool.lpToken));
        if (values[3] == 0) {
            // invalid price
            return values;
        }

        uint256 newValue = values[2] * values[3] / 1e18;
        newValue = newValue * pv.emissionsMultiplier / 1e18;
        if (newValue == 0) {
            // invalid value
            return values;
        }

        pv.lastValue = newValue;
        values[1] = newValue;

        return values;
    }

    /**
     * @notice Deposit assets to SophonFarming
     * @param _pid pid of the pool
     * @param _amount amount of the deposit
     * @param _boostAmount amount to boost
     */
    function deposit(uint256 _pid, uint256 _amount, uint256 _boostAmount) external {
        poolInfo[_pid].lpToken.safeTransferFrom(
            msg.sender,
            address(this),
            _amount
        );

        _deposit(_pid, _amount, _boostAmount);
    }

    /**
     * @notice Deposit an asset to SophonFarming
     * @param _pid pid of the deposit
     * @param _depositAmount amount of the deposit
     * @param _boostAmount amount to boost
     */
    function _deposit(uint256 _pid, uint256 _depositAmount, uint256 _boostAmount) internal {
        if (isFarmingEnded()) {
            revert FarmingIsEnded();
        }
        if (_depositAmount == 0) {
            revert InvalidDeposit();
        }
        if (_boostAmount > _depositAmount) {
            revert BoostTooHigh(_depositAmount);
        }

        massUpdatePools();

        PoolInfo storage pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][msg.sender];

        uint256 userAmount = user.amount;

        user.rewardSettled =
            userAmount *
            pool.accPointsPerShare /
            1e18 +
            user.rewardSettled -
            user.rewardDebt;

        // booster purchase proceeds
        heldProceeds[_pid] = heldProceeds[_pid] + _boostAmount;

        // deposit amount is reduced by amount of the deposit to boost
        _depositAmount = _depositAmount - _boostAmount;

        // set deposit amount
        user.depositAmount = user.depositAmount + _depositAmount;
        pool.depositAmount = pool.depositAmount + _depositAmount;

        // apply the boost multiplier
        _boostAmount = _boostAmount * boosterMultiplier / 1e18;

        user.boostAmount = user.boostAmount + _boostAmount;
        pool.boostAmount = pool.boostAmount + _boostAmount;

        // userAmount is increased by remaining deposit amount + full boosted amount
        userAmount = userAmount + _depositAmount + _boostAmount;

        user.amount = userAmount;
        pool.amount = pool.amount + _depositAmount + _boostAmount;

        user.rewardDebt = userAmount *
            pool.accPointsPerShare /
            1e18;

        emit Deposit(msg.sender, _pid, _depositAmount, _boostAmount);
    }

    /**
     * @notice Increase boost from existing deposits
     * @param _pid pid to pool
     * @param _boostAmount amount to boost
     */
    function increaseBoost(uint256 _pid, uint256 _boostAmount) external {
        if (isFarmingEnded()) {
            revert FarmingIsEnded();
        }
        if (_boostAmount == 0) {
            revert BoostIsZero();
        }

        uint256 maxAdditionalBoost = getMaxAdditionalBoost(msg.sender, _pid);
        if (_boostAmount > maxAdditionalBoost) {
            revert BoostTooHigh(maxAdditionalBoost);
        }

        massUpdatePools();

        PoolInfo storage pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][msg.sender];

        uint256 userAmount = user.amount;

        user.rewardSettled =
            userAmount *
            pool.accPointsPerShare /
            1e18 +
            user.rewardSettled -
            user.rewardDebt;

        // booster purchase proceeds
        heldProceeds[_pid] = heldProceeds[_pid] + _boostAmount;

        // user's remaining deposit is reduced by amount of the deposit to boost
        user.depositAmount = user.depositAmount - _boostAmount;
        pool.depositAmount = pool.depositAmount - _boostAmount;

        // apply the multiplier
        uint256 finalBoostAmount = _boostAmount * boosterMultiplier / 1e18;

        user.boostAmount = user.boostAmount + finalBoostAmount;
        pool.boostAmount = pool.boostAmount + finalBoostAmount;

        // user amount is increased by the full boosted amount - deposit amount used to boost
        userAmount = userAmount + finalBoostAmount - _boostAmount;

        user.amount = userAmount;
        pool.amount = pool.amount + finalBoostAmount - _boostAmount;

        user.rewardDebt = userAmount *
            pool.accPointsPerShare /
            1e18;

        emit IncreaseBoost(msg.sender, _pid, finalBoostAmount);
    }

    /**
     * @notice Returns max additional boost amount allowed to boost current deposits
     * @dev total allowed boost is 100% of total deposit
     * @param _user user in pool
     * @param _pid pid of pool
     * @return uint256 max additional boost
     */
    function getMaxAdditionalBoost(address _user, uint256 _pid) public view returns (uint256) {
        return userInfo[_pid][_user].depositAmount;
    }

    /**
     * @notice Withdraw an asset to SophonFarming
     * @param _pid pid of the withdraw
     * @param _withdrawAmount amount of the withdraw
     */
    function withdraw(uint256 _pid, uint256 _withdrawAmount) external {
        if (isWithdrawPeriodEnded()) {
            revert WithdrawNotAllowed();
        }
        if (_withdrawAmount == 0) {
            revert WithdrawIsZero();
        }

        massUpdatePools();

        PoolInfo storage pool = poolInfo[_pid];
        UserInfo storage user = userInfo[_pid][msg.sender];

        uint256 userDepositAmount = user.depositAmount;

        if (_withdrawAmount == type(uint256).max) {
            _withdrawAmount = userDepositAmount;
        } else if (_withdrawAmount > userDepositAmount) {
            revert WithdrawTooHigh(userDepositAmount);
        }

        uint256 userAmount = user.amount;

        user.rewardSettled =
            userAmount *
            pool.accPointsPerShare /
            1e18 +
            user.rewardSettled -
            user.rewardDebt;

        user.depositAmount = userDepositAmount - _withdrawAmount;
        pool.depositAmount = pool.depositAmount - _withdrawAmount;

        userAmount = userAmount - _withdrawAmount;

        user.amount = userAmount;
        pool.amount = pool.amount - _withdrawAmount;

        user.rewardDebt = userAmount *
            pool.accPointsPerShare /
            1e18;

        pool.lpToken.safeTransfer(msg.sender, _withdrawAmount);

        emit Withdraw(msg.sender, _pid, _withdrawAmount);
    }

    /**
     * @notice Called by an whitelisted admin to transfer points to another user
     * @param _pid pid of the pool to transfer points from
     * @param _sender address to send accrued points
     * @param _receiver address to receive accrued points
     * @param _transferAmount amount of points to transfer
     */
    function transferPoints(uint256 _pid, address _sender, address _receiver, uint256 _transferAmount) external {

        if (!whitelist[msg.sender][_sender]) {
            revert TransferNotAllowed();
        }

        if (_sender == _receiver || _receiver == address(this) || _transferAmount == 0) {
            revert InvalidTransfer();
        }

        massUpdatePools();

        PoolInfo storage pool = poolInfo[_pid];

        if (address(pool.lpToken) == address(0)) {
            revert PoolDoesNotExist();
        }

        uint256 accPointsPerShare = pool.accPointsPerShare;

        UserInfo storage userFrom = userInfo[_pid][_sender];
        UserInfo storage userTo = userInfo[_pid][_receiver];

        uint256 userFromAmount = userFrom.amount;
        uint256 userToAmount = userTo.amount;

        uint userFromRewardSettled =
            userFromAmount *
            accPointsPerShare /
            1e18 +
            userFrom.rewardSettled -
            userFrom.rewardDebt;

        if (_transferAmount == type(uint256).max) {
            _transferAmount = userFromRewardSettled;
        } else if (_transferAmount > userFromRewardSettled) {
            revert TransferTooHigh(userFromRewardSettled);
        }

        userFrom.rewardSettled = userFromRewardSettled - _transferAmount;

        userTo.rewardSettled =
            userToAmount *
            accPointsPerShare /
            1e18 +
            userTo.rewardSettled -
            userTo.rewardDebt +
            _transferAmount;

        userFrom.rewardDebt = userFromAmount *
            accPointsPerShare /
            1e18;

        userTo.rewardDebt = userToAmount *
            accPointsPerShare /
            1e18;

        emit TransferPoints(_sender, _receiver, _pid, _transferAmount);
    }

    /**
     * @notice Returns the current block number
     * @dev Included to help with testing since it can be overridden for custom functionality
     * @return uint256 current block number
     */
    function getBlockNumber() virtual public view returns (uint256) {
        return block.number;
    }

    /**
     * @notice Returns info about each pool
     * @return poolInfos all pool info
     */
    function getPoolInfo() external view returns (PoolInfo[] memory poolInfos) {
        uint256 length = poolInfo.length;
        poolInfos = new PoolInfo[](length);
        for(uint256 pid = 0; pid < length; ++pid) {
            poolInfos[pid] = poolInfo[pid];
            (, poolInfos[pid].totalRewards) = _settlePool(pid);
        }
    }

    /**
     * @notice Returns user info for a list of users
     * @param _users list of users
     * @return userInfos optimized user info
     */
    function getOptimizedUserInfo(address[] memory _users) external view returns (uint256[4][][] memory userInfos) {
        uint256 usersLen = _users.length;
        userInfos = new uint256[4][][](usersLen);
        uint256 poolLen = poolInfo.length;
        for(uint256 i = 0; i < usersLen; i++) {
            address _user = _users[i];
            userInfos[i] = new uint256[4][](poolLen);
            for(uint256 pid = 0; pid < poolLen; ++pid) {
                UserInfo memory uinfo = userInfo[pid][_user];
                userInfos[i][pid][0] = uinfo.amount;
                userInfos[i][pid][1] = uinfo.boostAmount;
                userInfos[i][pid][2] = uinfo.depositAmount;
                userInfos[i][pid][3] = _pendingPoints(pid, _user);
            }
        }
    }

    /**
     * @notice Returns accrued points for a list of users
     * @param _users list of users
     * @return pendings accured points for user
     */
    function getPendingPoints(address[] memory _users) external view returns (uint256[][] memory pendings) {
        uint256 usersLen = _users.length;
        pendings = new uint256[][](usersLen);
        uint256 poolLen = poolInfo.length;
        for(uint256 i = 0; i < usersLen; i++) {
            address _user = _users[i];
            pendings[i] = new uint256[](poolLen);
            for(uint256 pid = 0; pid < poolLen; ++pid) {
                pendings[i][pid] = _pendingPoints(pid, _user);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "contracts/token/ERC20/IERC20.sol";
import {IERC20Permit} from "contracts/token/ERC20/extensions/IERC20Permit.sol";
import {Address} from "contracts/utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "contracts/token/ERC20/IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.20;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Sorts the pair (a, b) and hashes the result.
     */
    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

interface IWeth {
    event Approval(address indexed src, address indexed guy, uint wad);
    event Transfer(address indexed src, address indexed dst, uint wad);
    event Deposit(address indexed dst, uint wad);
    event Withdrawal(address indexed src, uint wad);

    function name() external view returns (string memory);
    function symbol() external view returns (string memory);
    function decimals() external view returns (uint8);
    function balanceOf(address user) external view returns (uint256);
    function allowance(address owner, address spender) external view returns (uint256);
    function totalSupply() external view returns (uint);

    function deposit() external payable;
    function withdraw(uint256 wad) external;
    function approve(address guy, uint wad) external returns (bool);
    function transfer(address dst, uint wad) external returns (bool);
    function transferFrom(address src, address dst, uint wad) external returns (bool);
}

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

interface IstETH {
    function submit(address _referral) external payable returns (uint256);
    function getSharesByPooledEth(uint256 _ethAmount) external view returns (uint256);
    function getPooledEthByShares(uint256 _sharesAmount) external view returns (uint256);
}

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

interface IwstETH {
    function wrap(uint256 _stETHAmount) external returns (uint256);
    function unwrap(uint256 _wstETHAmount) external returns (uint256);
    function getWstETHByStETH(uint256 _stETHAmount) external view returns (uint256);
    function getStETHByWstETH(uint256 _wstETHAmount) external view returns (uint256);
    function stEthPerToken() external view returns (uint256);
    function tokensPerStEth() external view returns (uint256);
}

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

interface IsDAI {
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
    function convertToShares(uint256 assets) external view returns (uint256);
    function convertToAssets(uint256 shares) external view returns (uint256);
}

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

interface IeETHLiquidityPool {
    function deposit(address _referral) external payable returns (uint256);
    function sharesForAmount(uint256 _amount) external view returns (uint256);
    function amountForShare(uint256 _share) external view returns (uint256);
}

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

interface IweETH {
    function wrap(uint256 _eETHAmount) external returns (uint256);
}

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

interface IPriceFeeds {

    event SetPriceFeedData(address indexed poolToken, FeedType feedType, bytes32 feedHash, uint256 staleSeconds);

    error ZeroAddress();
    error CountMismatch();
    error InvalidCall();
    error InvalidType();
    error TypeMismatch();
    error InvalidStaleSeconds();

    enum FeedType {
        Undefined,
        Stork
    }

    struct StorkData {
        bytes32 feedHash;
        uint256 staleSeconds;
        FeedType feedType;
    }

    function getPrice(address poolToken_) external view returns (uint256);

    function getStorkPrice(bytes32 feedHash_, uint256 staleSeconds_) external view returns (uint256);

    function setStorkFeedsData(address farmContract, address[] memory poolTokens_, StorkData[] memory poolTokenDatas_) external;
}

// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.26;

import "contracts/access/Ownable2Step.sol";

event ReplaceImplementationStarted(address indexed previousImplementation, address indexed newImplementation);
event ReplaceImplementation(address indexed previousImplementation, address indexed newImplementation);
error Unauthorized();

contract Upgradeable2Step is Ownable2Step {
    address public pendingImplementation;
    address public implementation;

    constructor() Ownable(msg.sender) {}

    // called on an inheriting proxy contract
    function replaceImplementation(address impl_) public onlyOwner {
        pendingImplementation = impl_;
        emit ReplaceImplementationStarted(implementation, impl_);
    }

    // called from an inheriting implementation contract
    function acceptImplementation() public {
        if (msg.sender != pendingImplementation) {
            revert OwnableUnauthorizedAccount(msg.sender);
        }
        emit ReplaceImplementation(implementation, msg.sender);
        delete pendingImplementation;
        implementation = msg.sender;
    }

    // called on an inheriting implementation contract
    function becomeImplementation(Upgradeable2Step proxy) public {
        if (msg.sender != proxy.owner()) {
            revert Unauthorized();
        }
        proxy.acceptImplementation();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "contracts/access/Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "contracts/utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: GPL-3.0-only

pragma solidity 0.8.26;

import "contracts/token/ERC20/IERC20.sol";
import "contracts/farm/interfaces/bridge/IBridgehub.sol";

contract SophonFarmingState {

    // Info of each pool.
    struct PoolInfo {
        IERC20 lpToken; // Address of LP token contract.
        address l2Farm; // Address of the farming contract on Sophon chain
        uint256 amount; // total amount of LP tokens earning yield from deposits and boosts
        uint256 boostAmount; // total boosted value purchased by users
        uint256 depositAmount; // remaining deposits not applied to a boost purchases
        uint256 allocPoint; // How many allocation points assigned to this pool. Points to distribute per block.
        uint256 lastRewardBlock; // Last block number that points distribution occurs.
        uint256 accPointsPerShare; // Accumulated points per share.
        uint256 totalRewards; // Total rewards earned by the pool.
        string description; // Description of pool.
    }

    // Info of each user.
    struct UserInfo {
        uint256 amount; // Amount of LP tokens the user is earning yield on from deposits and boosts
        uint256 boostAmount; // Boosted value purchased by the user
        uint256 depositAmount; // remaining deposits not applied to a boost purchases
        uint256 rewardSettled; // rewards settled
        uint256 rewardDebt; // rewards debt
    }

    enum PredefinedPool {
        sDAI,          // MakerDAO (sDAI)
        wstETH,        // Lido (wstETH)
        weETH          // ether.fi (weETH)
    }

    mapping(PredefinedPool => uint256) public typeToId;

    // held proceeds from booster sales
    mapping(uint256 => uint256) public heldProceeds;

    uint256 public boosterMultiplier;

    // Points created per block.
    uint256 public pointsPerBlock;

    // Info of each pool.
    PoolInfo[] public poolInfo;

    // Info of each user that stakes LP tokens.
    mapping(uint256 => mapping(address => UserInfo)) public userInfo;

    // Total allocation points. Must be the sum of all allocation points in all pools.
    uint256 public totalAllocPoint;

    // The block number when point mining ends.
    uint256 public endBlock;

    bool internal _initialized;

    mapping(address => bool) public poolExists;

    uint256 public endBlockForWithdrawals;

    IBridgehub public bridge;
    mapping(uint256 => bool) public isBridged;

    mapping(address userAdmin => mapping(address user => bool inWhitelist)) public whitelist;

    struct PoolValue {
        uint256 lastValue;
        uint256 emissionsMultiplier;
    }
    
    mapping(uint256 pid => PoolValue) public poolValue;

    // total USD value of all pools including all deposits, boosts, and emissionsMultipliers
    uint256 public totalValue;
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.26;

import {IL1SharedBridge} from "contracts/farm/interfaces/bridge/IL1SharedBridge.sol";
import {L2Message, L2Log, TxStatus} from "contracts/farm/interfaces/bridge/Messaging.sol";

struct L2TransactionRequestDirect {
    uint256 chainId;
    uint256 mintValue;
    address l2Contract;
    uint256 l2Value;
    bytes l2Calldata;
    uint256 l2GasLimit;
    uint256 l2GasPerPubdataByteLimit;
    bytes[] factoryDeps;
    address refundRecipient;
}

struct L2TransactionRequestTwoBridgesOuter {
    uint256 chainId;
    uint256 mintValue;
    uint256 l2Value;
    uint256 l2GasLimit;
    uint256 l2GasPerPubdataByteLimit;
    address refundRecipient;
    address secondBridgeAddress;
    uint256 secondBridgeValue;
    bytes secondBridgeCalldata;
}

struct L2TransactionRequestTwoBridgesInner {
    bytes32 magicValue;
    address l2Contract;
    bytes l2Calldata;
    bytes[] factoryDeps;
    bytes32 txDataHash;
}

interface IBridgehub {
    /// @notice pendingAdmin is changed
    /// @dev Also emitted when new admin is accepted and in this case, `newPendingAdmin` would be zero address
    event NewPendingAdmin(address indexed oldPendingAdmin, address indexed newPendingAdmin);

    /// @notice Admin changed
    event NewAdmin(address indexed oldAdmin, address indexed newAdmin);

    /// @notice Starts the transfer of admin rights. Only the current admin can propose a new pending one.
    /// @notice New admin can accept admin rights by calling `acceptAdmin` function.
    /// @param _newPendingAdmin Address of the new admin
    function setPendingAdmin(address _newPendingAdmin) external;

    /// @notice Accepts transfer of admin rights. Only pending admin can accept the role.
    function acceptAdmin() external;

    /// Getters
    function stateTransitionManagerIsRegistered(address _stateTransitionManager) external view returns (bool);

    function stateTransitionManager(uint256 _chainId) external view returns (address);

    function tokenIsRegistered(address _baseToken) external view returns (bool);

    function baseToken(uint256 _chainId) external view returns (address);

    function sharedBridge() external view returns (IL1SharedBridge);

    function getHyperchain(uint256 _chainId) external view returns (address);

    /// Mailbox forwarder

    function proveL2MessageInclusion(
        uint256 _chainId,
        uint256 _batchNumber,
        uint256 _index,
        L2Message calldata _message,
        bytes32[] calldata _proof
    ) external view returns (bool);

    function proveL2LogInclusion(
        uint256 _chainId,
        uint256 _batchNumber,
        uint256 _index,
        L2Log memory _log,
        bytes32[] calldata _proof
    ) external view returns (bool);

    function proveL1ToL2TransactionStatus(
        uint256 _chainId,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof,
        TxStatus _status
    ) external view returns (bool);

    function requestL2TransactionDirect(
        L2TransactionRequestDirect calldata _request
    ) external payable returns (bytes32 canonicalTxHash);

    function requestL2TransactionTwoBridges(
        L2TransactionRequestTwoBridgesOuter calldata _request
    ) external payable returns (bytes32 canonicalTxHash);

    function l2TransactionBaseCost(
        uint256 _chainId,
        uint256 _gasPrice,
        uint256 _l2GasLimit,
        uint256 _l2GasPerPubdataByteLimit
    ) external view returns (uint256);

    //// Registry

    function createNewChain(
        uint256 _chainId,
        address _stateTransitionManager,
        address _baseToken,
        uint256 _salt,
        address _admin,
        bytes calldata _initData
    ) external returns (uint256 chainId);

    function addStateTransitionManager(address _stateTransitionManager) external;

    function removeStateTransitionManager(address _stateTransitionManager) external;

    function addToken(address _token) external;

    function setSharedBridge(address _sharedBridge) external;

    event NewChain(uint256 indexed chainId, address stateTransitionManager, address indexed chainGovernance);
}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.26;

/// @title L1 Bridge contract interface
/// @author Matter Labs
/// @custom:security-contact [email protected]
interface IL1SharedBridge {
    event LegacyDepositInitiated(
        uint256 indexed chainId,
        bytes32 indexed l2DepositTxHash,
        address indexed from,
        address to,
        address l1Token,
        uint256 amount
    );

    event BridgehubDepositInitiated(
        uint256 indexed chainId,
        bytes32 indexed txDataHash,
        address indexed from,
        address to,
        address l1Token,
        uint256 amount
    );

    event BridgehubDepositBaseTokenInitiated(
        uint256 indexed chainId,
        address indexed from,
        address l1Token,
        uint256 amount
    );

    event BridgehubDepositFinalized(
        uint256 indexed chainId,
        bytes32 indexed txDataHash,
        bytes32 indexed l2DepositTxHash
    );

    event WithdrawalFinalizedSharedBridge(
        uint256 indexed chainId,
        address indexed to,
        address indexed l1Token,
        uint256 amount
    );

    event ClaimedFailedDepositSharedBridge(
        uint256 indexed chainId,
        address indexed to,
        address indexed l1Token,
        uint256 amount
    );

    function isWithdrawalFinalized(
        uint256 _chainId,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex
    ) external view returns (bool);

    function depositLegacyErc20Bridge(
        address _msgSender,
        address _l2Receiver,
        address _l1Token,
        uint256 _amount,
        uint256 _l2TxGasLimit,
        uint256 _l2TxGasPerPubdataByte,
        address _refundRecipient
    ) external payable returns (bytes32 txHash);

    function claimFailedDepositLegacyErc20Bridge(
        address _depositSender,
        address _l1Token,
        uint256 _amount,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof
    ) external;

    function claimFailedDeposit(
        uint256 _chainId,
        address _depositSender,
        address _l1Token,
        uint256 _amount,
        bytes32 _l2TxHash,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes32[] calldata _merkleProof
    ) external;

    function finalizeWithdrawalLegacyErc20Bridge(
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes calldata _message,
        bytes32[] calldata _merkleProof
    ) external returns (address l1Receiver, address l1Token, uint256 amount);

    function finalizeWithdrawal(
        uint256 _chainId,
        uint256 _l2BatchNumber,
        uint256 _l2MessageIndex,
        uint16 _l2TxNumberInBatch,
        bytes calldata _message,
        bytes32[] calldata _merkleProof
    ) external;

    function setEraPostDiamondUpgradeFirstBatch(uint256 _eraPostDiamondUpgradeFirstBatch) external;

    function setEraPostLegacyBridgeUpgradeFirstBatch(uint256 _eraPostLegacyBridgeUpgradeFirstBatch) external;

    function setEraLegacyBridgeLastDepositTime(
        uint256 _eraLegacyBridgeLastDepositBatch,
        uint256 _eraLegacyBridgeLastDepositTxNumber
    ) external;

    function L1_WETH_TOKEN() external view returns (address);

    function BRIDGE_HUB() external view returns (address);

    function legacyBridge() external view returns (address);

    function l2BridgeAddress(uint256 _chainId) external view returns (address);

    function depositHappened(uint256 _chainId, bytes32 _l2TxHash) external view returns (bytes32);


    struct L2TransactionRequestTwoBridgesInner {
        bytes32 magicValue;
        address l2Contract;
        bytes l2Calldata;
        bytes[] factoryDeps;
        bytes32 txDataHash;
    }
    /// data is abi encoded :
    /// address _l1Token,
    /// uint256 _amount,
    /// address _l2Receiver
    function bridgehubDeposit(
        uint256 _chainId,
        address _prevMsgSender,
        uint256 _l2Value,
        bytes calldata _data
    ) external payable returns (L2TransactionRequestTwoBridgesInner memory request);

    function bridgehubDepositBaseToken(
        uint256 _chainId,
        address _prevMsgSender,
        address _l1Token,
        uint256 _amount
    ) external payable;

    function bridgehubConfirmL2Transaction(uint256 _chainId, bytes32 _txDataHash, bytes32 _txHash) external;

    function receiveEth(uint256 _chainId) external payable;

}

// SPDX-License-Identifier: MIT

pragma solidity 0.8.26;

/// @dev The enum that represents the transaction execution status
/// @param Failure The transaction execution failed
/// @param Success The transaction execution succeeded
enum TxStatus {
    Failure,
    Success
}

/// @dev The log passed from L2
/// @param l2ShardId The shard identifier, 0 - rollup, 1 - porter
/// All other values are not used but are reserved for the future
/// @param isService A boolean flag that is part of the log along with `key`, `value`, and `sender` address.
/// This field is required formally but does not have any special meaning
/// @param txNumberInBatch The L2 transaction number in a Batch, in which the log was sent
/// @param sender The L2 address which sent the log
/// @param key The 32 bytes of information that was sent in the log
/// @param value The 32 bytes of information that was sent in the log
// Both `key` and `value` are arbitrary 32-bytes selected by the log sender
struct L2Log {
    uint8 l2ShardId;
    bool isService;
    uint16 txNumberInBatch;
    address sender;
    bytes32 key;
    bytes32 value;
}

/// @dev An arbitrary length message passed from L2
/// @notice Under the hood it is `L2Log` sent from the special system L2 contract
/// @param txNumberInBatch The L2 transaction number in a Batch, in which the message was sent
/// @param sender The address of the L2 account from which the message was passed
/// @param data An arbitrary length message
struct L2Message {
    uint16 txNumberInBatch;
    address sender;
    bytes data;
}

/// @dev Internal structure that contains the parameters for the writePriorityOp
/// internal function.
/// @param txId The id of the priority transaction.
/// @param l2GasPrice The gas price for the l2 priority operation.
/// @param expirationTimestamp The timestamp by which the priority operation must be processed by the operator.
/// @param request The external calldata request for the priority operation.
struct WritePriorityOpParams {
    uint256 txId;
    uint256 l2GasPrice;
    uint64 expirationTimestamp;
    BridgehubL2TransactionRequest request;
}

/// @dev Structure that includes all fields of the L2 transaction
/// @dev The hash of this structure is the "canonical L2 transaction hash" and can
/// be used as a unique identifier of a tx
/// @param txType The tx type number, depending on which the L2 transaction can be
/// interpreted differently
/// @param from The sender's address. `uint256` type for possible address format changes
/// and maintaining backward compatibility
/// @param to The recipient's address. `uint256` type for possible address format changes
/// and maintaining backward compatibility
/// @param gasLimit The L2 gas limit for L2 transaction. Analog to the `gasLimit` on an
/// L1 transactions
/// @param gasPerPubdataByteLimit Maximum number of L2 gas that will cost one byte of pubdata
/// (every piece of data that will be stored on L1 as calldata)
/// @param maxFeePerGas The absolute maximum sender willing to pay per unit of L2 gas to get
/// the transaction included in a Batch. Analog to the EIP-1559 `maxFeePerGas` on an L1 transactions
/// @param maxPriorityFeePerGas The additional fee that is paid directly to the validator
/// to incentivize them to include the transaction in a Batch. Analog to the EIP-1559
/// `maxPriorityFeePerGas` on an L1 transactions
/// @param paymaster The address of the EIP-4337 paymaster, that will pay fees for the
/// transaction. `uint256` type for possible address format changes and maintaining backward compatibility
/// @param nonce The nonce of the transaction. For L1->L2 transactions it is the priority
/// operation Id
/// @param value The value to pass with the transaction
/// @param reserved The fixed-length fields for usage in a future extension of transaction
/// formats
/// @param data The calldata that is transmitted for the transaction call
/// @param signature An abstract set of bytes that are used for transaction authorization
/// @param factoryDeps The set of L2 bytecode hashes whose preimages were shown on L1
/// @param paymasterInput The arbitrary-length data that is used as a calldata to the paymaster pre-call
/// @param reservedDynamic The arbitrary-length field for usage in a future extension of transaction formats
struct L2CanonicalTransaction {
    uint256 txType;
    uint256 from;
    uint256 to;
    uint256 gasLimit;
    uint256 gasPerPubdataByteLimit;
    uint256 maxFeePerGas;
    uint256 maxPriorityFeePerGas;
    uint256 paymaster;
    uint256 nonce;
    uint256 value;
    // In the future, we might want to add some
    // new fields to the struct. The `txData` struct
    // is to be passed to account and any changes to its structure
    // would mean a breaking change to these accounts. To prevent this,
    // we should keep some fields as "reserved"
    // It is also recommended that their length is fixed, since
    // it would allow easier proof integration (in case we will need
    // some special circuit for preprocessing transactions)
    uint256[4] reserved;
    bytes data;
    bytes signature;
    uint256[] factoryDeps;
    bytes paymasterInput;
    // Reserved dynamic type for the future use-case. Using it should be avoided,
    // But it is still here, just in case we want to enable some additional functionality
    bytes reservedDynamic;
}

/// @param sender The sender's address.
/// @param contractAddressL2 The address of the contract on L2 to call.
/// @param valueToMint The amount of base token that should be minted on L2 as the result of this transaction.
/// @param l2Value The msg.value of the L2 transaction.
/// @param l2Calldata The calldata for the L2 transaction.
/// @param l2GasLimit The limit of the L2 gas for the L2 transaction
/// @param l2GasPerPubdataByteLimit The price for a single pubdata byte in L2 gas.
/// @param factoryDeps The array of L2 bytecodes that the tx depends on.
/// @param refundRecipient The recipient of the refund for the transaction on L2. If the transaction fails, then
/// this address will receive the `l2Value`.
struct BridgehubL2TransactionRequest {
    address sender;
    address contractL2;
    uint256 mintValue;
    uint256 l2Value;
    bytes l2Calldata;
    uint256 l2GasLimit;
    uint256 l2GasPerPubdataByteLimit;
    bytes[] factoryDeps;
    address refundRecipient;
}

Please enter a contract address above to load the contract details and source code.

Context size (optional):